
Moodle DX Update
Andrew Lyons

Principal Architect
Moodle LMS

Agenda

● Changes to Moodle Versioning
and Deprecation policies

● Upgrade Notes from Moodle 4.5
● Coding Style and related tooling
● Dependency Injection

○ Clock
○ Hooks

Moodle Versioning

● Changing after Moodle 4.5
● No change to:

○ Frequency
○ Release cycle
○ LTS cycle

● The release after an LTS will be a
new Series version

● The last release in a series will be
an LTS

Moodle 4.5 LTS -- Under development

Moodle 5.0 -- New Series

Moodle 5.1

Moodle 5.2

Moodle 5.3 LTS -- Last in Series

Moodle 6.0 -- New Series

Moodle 6.1

Moodle 6.2

Moodle 6.3 LTS -- Last in Series

Moodle versioning

● Clearer meaning of version numbers
○ Last release is always an LTS

● Aim to land biggest changes at the start of a new series
● Give more time for big new changes to stabilise
● More stable LTS releases
● More predictable change planning for partners and larger institutions

Rationale

New policy

Where possible:

Emit debugging and continue to work
until the release after the next LTS

Example:

Something deprecated before Moodle
4.5 will be removed in Moodle 5.0

Something deprecated in Moodle 4.5 ->
5.2 will be removed in Moodle 6.0

Deprecation Policies

Previous policy

Where possible:

Emit debugging and continue to work
for FOUR major versions

Example:

Something deprecated in 4.1 will be
removed in Moodle 4.5

Something deprecated in Moodle 4.5
will be removed in Moodle 5.3

Deprecated Previous policy New policy

4.1 4.5 LTS 4.5 LTS

4.2 5.0 5.0 New policy starts

4.3 5.1 5.0

4.4 5.2 5.0

4.5 5.3 LTS 6.0

5.0 6.0 6.0

5.1 6.1 6.0

5.2 6.2 6.0

5.3 6.3 LTS 7.0

Rationale

● Reduce burden on developers
● Easier to work out when removals will occur
● Less frequent removals
● Encourage plugin developers to have one branch per Moodle Series

More examples

Changes to JS Minification

PHP Version support (MDLSITE-7677)

Questions..?

Developer Upgrade Notes

● Specifically upgrade.txt
● Intended to make it easier for plugin developers to

discover changes which impact them
● Lots of them - 127 at last count
● Spread out across Moodle
● Lack consistency, and sorting, and standardisation
● Not clear what should be mentioned or where

Developer Upgrade Notes (MDL-81125)

● Impacts people contributing to Moodle core only
● For Moodle 4.5 onwards
● Move away from handwritten upgrade.txt files
● Use CLI tooling to write upgrade notes
● Generate Markdown files

○ Central UPGRADING.md; and
○ Per-component UPGRADING.md

● Collect specific information:
○ Issue number
○ Type of change
○ Component

https://moodledev.io/general/development/upgradenotes

● Improve discoverability of changes
● Link to the issue where a change was made
● Provide guidance on when, what, and why a change should be

documented
● Allows better integrations with developer documentation
● Prevents merge and rebase conflicts for those making changes to

busier core components

Rationale

http://www.youtube.com/watch?v=j1eJV-lIdt4

Questions..?

Moodle coding style

● Updates to the moodle-cs rulesets for PHP_CodeSniffer
● Working towards deprecating and eliminating the need for

moodle-local_codechecker
● Adding additional rules

https://moodledev.io/general/development/tools/phpcs

● Available since Moodle 4.4
● Encourages writing to an Interface
● Allows you to swap out components
● Allows you to swap in mocked versions of classes for

testing
○ Hooks
○ Guzzle Client
○ Time

● Automatically reset between tests

Dependency Injection

https://moodledev.io/docs/4.5/apis/core/di

Dependency injection in legacy code

Dependency injection in newer code

Define dependencies of your
class in constructor using
type hints

When you fetch your class
using DI, dependencies are
resolved

Dependency injection in newer code

Dependencies are recursively
resolved

Dependency injection in newer code

New Routing system aimed at
Moodle 4.5 uses DI

MDL-81031

Use DI to dispatch a hook:

\core\di::get(\core\hook\manager::class)->dispatch($hook);

Allows you to mock the hook manager and include custom
hook callbacks for testing

https://moodledev.io/docs/4.5/apis/core/hooks#dispatching-hooks

DI and Hooks

DI and Time

● New `\core\clock` implementation since Moodle 4.4
● Meets PSR-20: Clock
● Allows you to become a Time Lord in Unit Tests

DI and Time

● New `\core\clock` implementation since Moodle 4.4
● Meets PSR-20: Clock
● Allows you to become a Time Lord in Unit Tests

DI and Time

DI and Time
Use a frozen clock

The timecreated will be
the same because the post
uses the \core\clock

Questions..?

Copyright 2024 © Moodle Pty Ltd

